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Abstract. In recent papers, Warsa, Wareing and Morel introduced a mixed discontinuous finite
element method for the discretization of a first order system of equations that describe the diffusion
of radiation in materials. We show that this method belongs to the general class of discontinuous
Galerkin methods studied by Castillo, Cockburn, Perugia, and Schötzau in [2]. Degree k ≥ 0
polynomials are used to approximate the two unknowns appearing in the mixed formulation, the
same degree being used for both. The method delivers convergence in the energy norm of order k+ 1

2

and convergence of the scalar flux in the L2-norm of order k + 1. The sharpness of these results is
confirmed by numerical experiments for three dimensional model problems on tetrahedral meshes.
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1. Introduction. Over the last few years, discontinuous Galerkin (DG) methods
have been successfully applied to a wide variety of problems; see the state–of–the–art
surveys [3, 5, 7]. These methods are based on completely discontinuous finite element
spaces combining finite element and finite volume technologies by using the ideas of
numerical fluxes and slope limiters. This results in robust and high–order accurate
schemes that can easily handle complicated geometries and boundaries. Moreover,
DG methods are locally conservative – a desirable property for numerical solutions
– because they weakly enforce conservation in an element–by–element fashion. In
addition, such methods are well suited for the discretization of multi–physics and
multi–material problems because they provide a single finite element framework for
discretizing both diffusive and convective transport terms.

Recently, Warsa, Wareing and Morel introduced a discontinuous finite element
method for the discretization of a radiation–diffusion problem in two– and three–
dimensional domains; see [12] and [11]. It is represented by a system of two coupled
first order equations for the zeroth and first angular moments of the angular flux (the
direction–dependent solution to the Boltzmann transport equation). These equations
are called the P1 equations. They arise out of an angular Galerkin approximation to
the Boltzmann transport equation based upon a spherical–harmonic trial space of first
order; see [8] or [9] for more details. As in standard, upwind Godunov methods, their
method conserves both the radiation energy and the radiation momentum over each
cell. In combination with efficient preconditioning techniques, the results in [12, 13]
indicate that the method of Warsa, Wareing and Morel can be effectively applied to
a wide range of problems.

In this note, we show that the discrete formulation of the P1 equations of Warsa,
Wareing and Morel in fact belongs to the general class of mixed DG methods analyzed
in [2]. This class extends and generalizes the local discontinuous Galerkin (LDG)
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method proposed by Cockburn and Shu in [6] and further analyzed, in the context of
pure diffusion problems, in [1, 4, 10]. Whereas in the original LDG approach the vector
unknown can be eliminated from the equations in a local and element–wise manner, in
the method of Warsa, Wareing and Morel, that belongs to the “truly” mixed variants
of the LDG method described in [2], such a local elimination is no longer possible.
While some may see this as a shortcoming of truly mixed DG methods, it does in
fact lead to better and nearly optimal convergence rates for the approximation of the
vector variable; see [2].

The theoretical results in [2] can then be applied to the method of Warsa, Wareing
and Morel to show that the method is well–posed and to calculate a priori error
bounds. For an approximation order k ≥ 0, the method exhibits convergence rates
in the mesh size of order k + 1

2
in a suitable energy norm, and of order k + 1 in the

L2–norm of the scalar flux. The sharpness of these theoretical results is tested in a
series of numerical experiments for a three dimensional model problem on tetrahedral
meshes. These tests also complete the tests in [2] where no numerical results were
shown for truly mixed DG methods.

The rest of the note is organized as follows. In section 2, we detail the radiation–
diffusion problem that constitutes the P1 equations. The precise formulation of the
discontinuous Galerkin method under consideration is given in section 3. For the sake
of completeness, we report in section 4 the main steps of the error analysis, following
[2]. Section 5 shows the results of a numerical study supporting the theoretical results
in section 4. The note concludes with some summary remarks in section 6.

2. The radiation–diffusion problem. The radiation–diffusion problem we
consider in this work represents an angular Galerkin approximation to the linear
Boltzmann transport equation that is based on a spherical–harmonic trial space of
first order for the angular flux [8, 9]. This approximation comprises the so–called P1

equations, a system of two first–order linear differential equations for the zeroth and
first angular moments of the particle distribution (the scalar flux and current, respec-
tively). Note that in the absence of time dependence (the case considered here) the
two equations can be reduced to a single second order equation for one of the vari-
ables. It is the second order diffusion equation for the scalar flux that is typically used
for accelerating or preconditioning radiation transport calculations [9], in contrast to
the first order form presented in [11] and analyzed here.

Let Ω ⊂ Rd, d = 2, 3, be a bounded polygonal or polyhedral domain, whose
boundary Γ = ∂Ω is partitioned into two parts Γ = ΓV ∪ ΓR with disjoint interiors.
The problem is to find a solution that consists of the current J = J(x) and scalar flux
Φ = Φ(x) satisfying the differential equations

∇Φ + 3σt(x)J = 3Q1, ∇ · J + σa(x)Φ = Q0, (2.1)

subject to vacuum and reflecting boundary conditions

1

4
Φ −

1

2
J · n = 0 on ΓV , J · n = 0 on ΓR, (2.2)

respectively, where n denotes the outward normal unit vector to Γ.
Here, Q0 ∈ L2(Ω) and Q1 ∈ L2(Ω)d are the zeroth and first angular moments of

an inhomogeneous source. Furthermore, we assume the material coefficients σt and
σa belong to L∞(Ω) and satisfy σt(x) ≥ σ? > 0 and σa(x) ≥ 0 in Ω (σa = 0 in purely
scattering subregions). For simplicity, we also assume

∫
ΓV

ds > 0 and exclude the
pure Neumann case, ΓV = 0.
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3. Discontinuous Galerkin discretization. In this section, we detail the
mixed discontinuous Galerkin discretization proposed by Warsa, Wareing and Morel
[11, 12] and cast the method in the setting of [2].

3.1. Meshes and traces. We consider shape regular meshes Th that partition
the domain Ω into triangle and/or parallelograms, if d = 2, or tetrahedra and/or
parallelepipeds, if d = 3, with possible hanging nodes. We denote by hK the diameter
of the element K ∈ Th and set h = maxK hK . An interior face of Th is defined as the
(non–empty) (d− 1)–dimensional interior of ∂K+ ∩∂K−, where K+ and K− are two
adjacent elements of Th, not necessarily matching. A boundary face of Th is defined
as the (non–empty) (d − 1)–dimensional interior of ∂K ∩ Γ, where K is a boundary
element of Th. We assume that a boundary face belongs entirely either to ΓV or ΓR,
respectively. We denote by EI the union of all interior faces of Th, by EV and ER the
union of all boundary faces of Th on ΓV and ΓR, respectively, and set E = EI∪EV ∪ER.

For piecewise smooth vector– and scalar–valued functions w and u, we introduce
the following trace operators. Let e ⊂ EI be an interior face shared by two elements
K+ and K−, and write n± for the outward normal unit vectors to the boundaries
∂K±, respectively. Denoting by w± and u± the traces on ∂K± taken from K±,
respectively, we define the jumps across e

[[w]] = w+ · n+ + w− · n−, [[u]] = u+n+ + u−n−,

and the averages {{w}} = (w+ +w−)/2 and {{u}} = (u+ +u−)/2. On a boundary face
e ⊂ EV ∪ ER, we set [[w]] = w · n, [[u]] = un, {{w}} = w and {{u}} = u.

3.2. Definition of the method. Let Th be a triangulation Th of Ω. We assume
that the exact solution (J,Φ) belongs to W × U , where

W = {w ∈ L2(Ω)d : w|K ∈ H1(K)d, K ∈ Th},

U = {u ∈ L2(Ω) : u|K ∈ H1(K), K ∈ Th}.

We wish to approximate (J,Φ) by discrete functions (Jh,Φh) ∈ Wh × Uh, where

Wh = {w ∈ L2(Ω)d : w|K ∈ Pk(K)d, K ∈ Th},

Uh = {u ∈ L2(Ω) : u|K ∈ Pk(K), K ∈ Th},

for k ≥ 0, with Pk(K) denoting the set of polynomials of degree at most k on K,
if K is a triangle or a tetrahedron, or the set of polynomials of degree at most k in
each variable on K, if K is a parallelogram or a parallelepiped. This approximation
is defined by imposing that, for all elements K ∈ Th and all discrete test functions
(w, u) ∈ Wh × Uh,

3

∫

K

σt Jh · w dx −

∫

K

Φh ∇ · w dx +

∫

∂K

Φ̂h w · nK ds = 3

∫

K

Q1 · w dx,

−

∫

K

Jh · ∇u dx +

∫

∂K

u Ĵh,K ds +

∫

K

σa Φh u dx =

∫

K

Q0 u dx.

(3.1)

Here, Ĵh,K and Φ̂h are the so–called numerical fluxes, that are approximations to the
traces on the element interfaces of J · nK and Φ and are chosen as follows (see [11]).

First, for an element K+ and an interior face e shared by K+ and a neighboring
element K−, we define the following inwardly and outwardly directed discrete flows
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(partial currents) by

J in
e,K+ =

1

4
Φ−

h −
1

2
J−

h · nK+ , Jout
e,K+ =

1

4
Φ+

h +
1

2
J+

h · nK+ .

If the face e of K+ is contained in EV ∪ ER, the outwardly directed flow Jout
e,K+ is

defined as before. Further, if the face e of K+ belongs to EV , we set J in
e,K+ = 0,

whereas J in
e,K+ is not needed for e ⊂ ER.

The numerical fluxes are then chosen as

Ĵh,K |e = (1 − ξ) (Jout
e,K − J in

e,K), Φ̂h|e = 2
[
(1 + ξ) Jout

e,K + (1 − ξ) J in
e,K

]
, (3.2)

with ξ = 0, if e ⊂ EI ∪ EV , and ξ = 1, if e ⊂ ER.
This completes the definition of the DG method proposed in [11, 12] for problem

(2.1)–(2.2) (where only the case k = 1 was considered because of the context in which
the solution to the P1 equations was applied). Notice that, for e shared by K+ and

K−, Ĵh,K+ |e = −Ĵh,K− |e, whereas the definition Φ̂h|e does not depend on which side

of e it is taken from. This is the reason for the subscript K in Ĵh,K .
Let us now cast the fluxes in (3.2) in the setting of [2]. To this end, we denote by

Ĵh a vector field such that Ĵh|e · nK = Ĵh,K , for all e ⊂ ∂K (the definition of Ĵh|e no
longer depends on which side it is taken from). Then we have that

Ĵh|e = {{Jh}} +
1

4
[[Φh]], Φ̂h|e = {{Φh}} + [[Jh]], if e ⊂ EI ,

Ĵh|e =
1

2
Jh +

1

4
Φh n, Φ̂h|e =

1

2
Φh + Jh · n, if e ⊂ EV ,

Ĵh|e = 0, Φ̂h|e = Φh + 2Jh · n, if e ⊂ ER.

We point out that these fluxes are consistent, local and conservative in the sense of [1].
The above method belongs to the general class of mixed DG methods investi-

gated in [2] and the theoretical results there can be used to analyze the method. In
particular, the method is very similar to the original LDG method. Unlike for the
LDG method, it is not possible to eliminate the unknown Jh, element–by–element, in
favor of the unknown Φh. On the other hand, the method here gives better orders of
convergence for the unknown Jh than the original LDG method.

Remark 3.1. The choice in (3.2) of the numerical fluxes can be motived by
physical arguments corresponding to the so–called Marshak approximation; see [11, 12]
for details. Another possible approach for defining the numerical fluxes is closely
associated with Riemann solvers used in the numerical solution of fluid dynamics
problems. These alternate definitions are presented in [11]. There is no advantage in
choosing one over the other, other than the context in which the P1 equations will be
applied. The results presented in this note are independent of this choice and we work
with the Marshak approach here. Note that in either case, the numerical fluxes can be
easily adapted to take into account inhomogeneous boundary data.

3.3. Mixed setting. In this section, we rewrite the method as a classical (sta-
bilized) mixed method. In order to do that, we sum (3.1) over all elements and obtain

3

∫

Ω

σt Jh · w dx −

∫

Ω

Φh ∇h · w dx +

∫

E

Φ̂h [[w]] ds = 3

∫

Ω

Q1 · w dx,

−

∫

Ω

Jh · ∇hu dx +

∫

E

Ĵh · [[u]] ds +

∫

Ω

σa Φh u dx =

∫

Ω

Q0 u dx,
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for all (w, u) ∈ Wh ×Uh, where ∇h· and ∇h denote the element-wise divergence and
gradient operators, respectively.

We introduce the bilinear forms

a(J,w) = 3

∫

Ω

σt J · w dx +

∫

EI∪EV

[[J]][[w]] ds + 2

∫

ER

(J · n) (w · n) ds,

b(w, u) = −

∫

Ω

u∇h · w dx +

∫

EI∪ER

{{u}}[[w]] ds +
1

2

∫

EV

uw · n ds,

c(Φ, u) =

∫

Ω

σa Φu dx +
1

4

∫

EI∪EV

[[Φ]] · [[u]] ds,

and the functionals

F (w) = 3

∫

Ω

Q1 · w dx, G(u) =

∫

Ω

Q0 u dx.

Then the method can be written as: find (Jh,Φh) ∈ Wh × Uh such that

a(Jh,w)+b(w,Φh) =F (w) (3.3)

−b(Jh, u)+ c(Φh, u) =G(u), (3.4)

for all (w, u) ∈ Wh × Uh. By setting

Ah(J,Φ;w, u) = a(J,w) + b(w,Φ) − b(J, u) + c(Φ, u)

H(w, u) = F (w) + G(u),

we can formulate the method equivalently as: find (Jh,Φh) ∈ Wh × Uh such that

Ah(Jh,Φh;w, u) = H(w, u)

for all (w, u) ∈ Wh × Uh.
We note that the formulation (3.3)-(3.4) is well–posed (see [2, Proposition 2.1])

and consistent, due to the consistency of the numerical fluxes.

4. Error analysis. In this section, we present a priori error bounds for the DG
method introduced in the previous section. Since this method belongs to the general
class of DG methods analyzed in [2], the theoretical results there apply and give
corresponding bounds for the method of Warsa, Wareing and Morel. For the sake
of completeness, we review the abstract setting and the main steps of the analysis
from [2].

As usual, we denote by Hk(D), D being a domain in Rd or Rd−1, the Sobolev
spaces of integer orders, and by ‖ · ‖k,D the usual norms in Hk(D) and Hk(D)d. The
following seminorm in W × U can be naturally associated with the global form Ah:
|(w, u)|2Ah

:= Ah(w, u;w, u), for all (w, u) ∈ W × U , i.e.,

|(w, u)|2Ah
= 3‖σ

1
2

t w‖2
0,Ω + ‖[[w]]‖2

0,EI∪EV
+ 2‖[[w]]‖2

0,ER
+ ‖σ

1
2
a u‖2

0,Ω +
1

4
‖[[u]]‖2

EI∪EV
.

Whenever σa > 0, |(·, ·)|Ah
actually defines a norm.

We assume that the local mesh sizes are of bounded variation, that is, there exists
a constant ` > 0 such that `−1hK ≤ hK′ ≤ `hK , for all K and K ′ sharing a (d − 1)–
dimensional face. This assumption forbids the situation where the mesh is indefinitely



6 I. PERUGIA, D. SCHÖTZAU, AND J. WARSA

refined in only one of two adjacent subdomains, but allows for local refinement and
is not restrictive in practice.

The main result is given in the following theorem.
Theorem 4.1. Assume the exact solution (J,Φ) of (2.1)–(2.2) to belong to

Hs+1(Ω)d × Hs+2(Ω), with s ≥ 0. Let (Jh,Φh) be the DG approximation, for an
approximation degree k ≥ 0, obtained on shape–regular meshes with possible hanging
nodes and local mesh sizes of bounded variation. Then we have the error bound

|(J − Jh,Φ − Φh)|Ah
≤ C hmin{s,k}+ 1

2 (‖J‖s+1,Ω + ‖Φ‖s+2,Ω),

with a constant C > 0 independent of the mesh size h.
Furthermore, if the domain and the coefficients σt and σa are sufficiently regular, we
also have the L2–bound

‖Φ − Φh‖0,Ω ≤ C hmin{s,k}+1 (‖J‖s+1,Ω + ‖Φ‖s+2,Ω),

with a constant C > 0 independent of the mesh size h.
Remark 4.2. The order of convergence in the approximation of the seminorm

|(·, ·)|Ah
is half a power of h better than for the standard LDG method, due to the

stabilizing effect of the jump terms in the form a(·, ·); see [2]. Moreover, the above
result also holds true for k = 0, i.e., for piecewise constant approximations. For the
LDG method, no convergence has been observed either theoretically or numerically in
this case.

Remark 4.3. The estimate of ‖Φ − Φh‖0,Ω is based on a standard duality ar-
gument and requires elliptic regularity. The exact requirement can be easily inferred
from the proof of Theorem 4.1 outlined below.

The proof of Theorem 4.1 follows from the abstract framework proposed in [2]
and the theoretical results there. Here, we review the main steps of the analysis. First
of all, we express the error (eJ, eΦ) = (J − Jh,Φ − Φh) as

(eJ, eΦ) = (J − ΠhJ,Φ − ΠhΦh) + (ΠhJ − Jh,ΠhΦ − Φh),

where Πh and Πh are the L2–projections from W and U onto Wh and Uh, respec-
tively. Then we make use of the following two ingredients:

(i) the so–called Galerkin orthogonality, which is a consequence of the consis-
tency of the method:

Ah(eJ, eΦ;w, u) = 0, ∀(w, u) ∈ Wh × Uh,

(ii) two inequalities that reflect the approximation properties of Πh and Πh, i.e.,

|Ah(J − ΠhJ,Φ − ΠhΦh; z − Πhz, v − Πhv)| ≤ K1(J,Φ; z, v),

for all (J,Φ), (z, v) ∈ W × U , and

|Ah(w, u;J − ΠhJ,Φ − ΠhΦh)| ≤ |(w, u)|Ah
K2(J,Φ),

for all (w, u) ∈ Wh × Uh and (J,Φ) ∈ W × U .
The error estimates of Theorem 4.1 can be obtained in terms of the functionals K1

and K2. In fact, the following result holds true (see [2, Lemma 2.3 and Lemma 2.4]).
Lemma 4.4. We have

|(eJ, eΦ)|Ah
≤ K

1
2

1 (J,Φ;J,Φ) + K2(J,Φ).
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Moreover, if (z, v) is the solution to the problem

∇ v + 3σtz = 0, ∇ · z + σav = eΦ, (4.1)

with homogeneous boundary conditions 1
4
v − 1

2
z · n = 0 on ΓV and z · n = 0 on ΓR,

we have

‖eΦ‖
2
0,Ω ≤ K1(J,Φ;−z, v) + K2(J,Φ)K2(−z, v).

Now, assume that (J,Φ) ∈ Hs+1(Ω)d×Hs+2(Ω) and (z, v) ∈ Ht+1(Ω)d×Ht+2(Ω).
From standard approximation properties of the L2–projections, we can estimate the
functional K1 in the first inequality of (ii) by

K1(J,Φ; z, v) ≤ C hmin{s,k}+min{t,k}+1 (‖J‖s+1,Ω + ‖Φ‖s+2,Ω) (‖z‖t+1,Ω + ‖v‖t+2,Ω),

with a constant C > 0 independent of the mesh size. Owing to the orthogonality
properties of the L2–projections, we can bound K2 in the second inequality of (ii) by

K2(J,Φ) ≤ C hmin{s,k}+ 1
2 (‖J‖s+1,Ω + ‖Φ‖s+2,Ω),

with a constant C > 0 independent of the mesh size. The error estimate for |(J −
Jh,Φ − Φh)|Ah

now immediately follows from the first part of Lemma 4.4, combined
with the estimate for K1 for (z, v) = (J,Φ) and the one for K2.

To prove the L2–error bound in Φ, let (z, v) be the solution of problem (4.1). We
assume elliptic regularity, i.e., we assume that the domain and the coefficients are
such that (z, v) ∈ H1(Ω)d × H2(Ω) and

‖z‖1,Ω + ‖v‖2,Ω ≤ C‖eΦ‖0,Ω, (4.2)

with a constant C > 0 that only depends on the domain and the data. From the
second part of Lemma 4.4 and the estimates of K1 and K2, we obtain

‖eΦ‖
2
0,Ω ≤ C hmin{s,k}+1 (‖J‖s+1,Ω + ‖Φ‖s+2,Ω)(‖z‖1,Ω + ‖v‖2,Ω).

Combining the above estimate with (4.2) yields the desired L2–bound.

5. Numerical results. In this section, we present the results of a series of nu-
merical experiments that demonstrate the theoretical error estimates of Theorem 4.1.

Example I: A smooth solution. We start by testing the performance of the
method for a smooth solution. We consider the radiation–diffusion system (2.1) on
Ω = (0, 1)3, with reflecting boundary conditions on the faces {x = 0} and {x = 1},
and vacuum boundary conditions on the remaining boundary faces. The material
coefficients are σt = 1 and σa = 10−4. The right–hand sides Q0 and Q1 are chosen
so that the exact solution (J,Φ) is given by

J(x, y, z) =
(
x (1 − x) y2z2, x2(−y2 + y + 1)(z − 1

2
)3, x2(y − 1

2
)3(−z2 + z + 1)

)
,

Φ(x, y, z) = 16x2
(
y − 1

2

)3(
z − 1

2

)3
.

This solution is arbitrarily smooth and allows us to test the theoretical convergence
rates for polynomial approximation degrees k = 0 and k = 1.
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Solutions are computed on a sequence of tetrahedral meshes {Ti}
5
i=1 constructed

by uniformly dividing the domain into Cartesian grids with 2i, i = 1, . . . , 5, equal
intervals in each dimension. Each cube in the grid is then subdivided into six tetra-
hedra of equal volume. The mesh size hi on mesh Ti is therefore proportional to 2−i;
specifically, {hi}

5
i=1 ' (4.33 · 10−1, 2.17 · 10−1, 1.08 · 10−1, 5.41 · 10−2, 2.71 · 10−2).

In Table 5.1 we report the errors and estimates of the convergence rates in the
Ah–seminorm, in the L2–norm of Φ, as well as in the L2–norm of J, for k = 0 and
k = 1. If e(Ti) denotes the error (in the corresponding norm) on mesh Ti, then

ri =
log

(
e(Ti)/e(Ti−1)

)

log
(
hi/hi−1

)

is an estimate of the numerical convergence rate for i > 1. Clearly, convergence rates
of 0.5 and 1.5 in the Ah–seminorm, as well as order 1 and order 2 convergence in the
L2–norm for Φ, are obtained for k = 0 and k = 1, respectively. This confirms the
theoretical results in Theorem 4.1. Also, the ‖J − Jh‖0,Ω part of the Ah–seminorm
actually converges more rapidly than the whole Ah–seminorm. The ‖J−Jh‖0,Ω error
converges with the optimal rates 1 and 2, for k = 0 and k = 1 respectively.

|(J − Jh,Φ − Φh)|Ah
‖Φ − Φh‖0,Ω ‖J − Jh‖0,Ω

i error ri error ri error ri

1 7.11 e–2 – 1.45 e–2 – 3.13 e–2 –
2 4.91 e–2 5.34 e–1 8.90 e–3 7.00 e–1 1.90 e–2 7.18 e–1

k = 0 3 3.21 e–2 6.14 e–1 4.71 e–3 9.17 e–1 1.02 e–2 9.04 e–1
4 2.14 e–2 5.82 e–1 2.40 e–3 9.73 e–1 5.21 e–3 9.67 e–1
5 1.47 e–2 5.47 e–1 1.21 e–3 9.90 e–1 2.63 e–3 9.87 e–1
1 4.40 e–2 – 7.22 e–3 – 1.21 e–2 –
2 1.91 e–2 1.20 e+0 2.36 e–3 1.61 e+0 3.71 e–3 1.71 e+0

k = 1 3 7.41 e–3 1.36 e+0 6.33 e–4 1.90 e+0 9.78 e–4 1.92 e+0
4 2.74 e–3 1.43 e+0 1.61 e–4 1.97 e+0 2.47 e–4 1.99 e+0
5 9.91 e–4 1.47 e+0 4.06 e–5 1.99 e+0 6.16 e–5 2.00 e+0

Table 5.1

Smooth solution: errors and convergence rates ri in the Ah–seminorm, L2–norm of Φ and

L2–norm of J, for k = 0, 1.

The convergence behavior of the different jump contributions to the Ah–seminorm
is shown in Figure 5.1 for k = 0. In the legend, the abbreviations I, R and V are
used for EI , ER and EV , respectively. Comparison with the line y = n−1/2 clearly
shows that the jumps over interior faces, ‖[[Jh]]‖0,EI

= ‖[[J−Jh]]‖0,EI
and ‖[[Φ]]‖0,EI

=

‖[[Φ−Φh]]‖0,EI
, converge with rates of O(h

1
2 ). On the other hand, comparison with the

line y = n−1 shows that all the boundary jumps exhibit O(h1) convergence. Results
for the case k = 1 are presented in Figure 5.2. Comparing the jump errors with the
lines y = n−1 and y = n−3/2 indicates that the interior jumps converge with rates of
O(h

3
2 ) while the boundary jump terms exhibit O(h2) convergence.

Example II: A piecewise smooth solution. In this second example, we con-
sider a piecewise smooth solution. As in the first example, we have Ω = (0, 1)3, this
time with with vacuum boundary conditions on the faces {x = 0} and {x = 1}, and
reflecting boundary conditions on the remaining boundary faces. The material coef-
ficients are σt = 1 and σa = 0 and the right–hand sides Q0 and Q1 are chosen such
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Fig. 5.1. Smooth solution: L2-errors of the jumps in J and Φ, for k = 0.
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Fig. 5.2. Smooth solution: L2-errors of the jumps in J and Φ, for k = 1.
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that the exact solution is

J(x, y, z) =
(

1
8
x + (x − 1

2
)y2z2, 0, 0

)
,

Φ(x, y, z) =

{
y2z2 in (0, 0.5) × (0, 1) × (0, 1),
y2z2 + (x − 1

2
)2 in (0.5, 1) × (0, 1) × (0, 1).

Since the coefficients σt and σa are constant and the domain is convex, the elliptic reg-
ularity assumptions for problem (4.1) are satisfied. Notice that Φ belongs to H

5
2
−ε(Ω),

ε > 0, but is piecewise polynomial. One would therefore expect a deterioration in the
convergence rates for k = 1 as a direct consequence of Theorem 4.1. However, the
proof of Theorem 4.1 can be straightforwardly adapted to piecewise smooth solutions,
and the same convergence rates as in Example I are predicted. This is confirmed in
the numerical results reported in Table 5.2, for the same sequence of meshes as in
Example I. The rates k + 1

2
in the Ah–seminorm and k + 1 in the L2–norms of Φ and

J are clearly seen. Furthermore, the jump errors exhibit the same convergence rates
as in Example I and so the corresponding plots are not shown for this problem.

|(J − Jh,Φ − Φh)|Ah
‖Φ − Φh‖0,Ω ‖J − Jh‖0,Ω

i error ri error ri error ri

1 2.56 e–1 – 1.12 e–1 – 7.31 e–2 –
2 1.94 e–1 4.01 e–1 5.80 e–2 9.56 e–1 4.26 e–2 7.79 e–1

k = 0 3 1.42 e–1 4.55 e–1 2.93 e–2 9.85 e–1 2.32 e–2 8.80 e–1
4 1.02 e–1 4.78 e–1 1.47 e–2 9.94 e–1 1.21 e–2 9.36 e–1
5 7.24 e–2 4.89 e–1 7.36 e–3 9.98 e–1 6.19 e–3 9.67 e–1
1 1.07 e–1 – 2.16 e–2 – 1.73 e–2 –
2 4.10 e–2 1.39 e+0 5.46 e–3 1.98 e+0 4.58 e–3 1.92 e+0

k = 1 3 1.49 e–2 1.46 e+0 1.37 e–3 2.00 e+0 1.16 e–3 1.98 e+0
4 5.34 e–3 1.48 e+0 3.42 e–4 2.00 e+0 2.92 e–4 1.99 e+0
5 1.90 e–3 1.49 e+0 8.55 e–5 2.00 e+0 7.32 e–5 2.00 e+0

Table 5.2

Piecewise smooth solution: errors and convergence rates ri in Ah–seminorm, L2–norm of Φ
and L2–norm of J, for k = 0, 1.

Example III: A two–material problem. In practice, the coefficient σt may
have strong discontinuities at the interfaces between different materials. In these
cases, where the vector-valued fluxes 1

3σt
∇Φ and J are typically smoother than the

scalar flux Φ, the use of mixed methods, as the one proposed in this paper, is of
particular importance. In this example, we will consider this kind of situation, where
the radiation–diffusion equations (2.1) are solved with σa = 0 and a discontinuous
coefficient σt. We again set Ω = (0, 1)3, and set vacuum boundary conditions on the
faces {x = 0} and {x = 1} with reflecting boundary conditions on the remaining
boundary faces. We define σt = a, for 0 ≤ x ≤ 0.5, σt = b, for 0.5 < x ≤ 1,
with positive parameters a and b, modeling a material discontinuity at x = 0.5. The
right–hand sides Q1 and Q0 are chosen so that the solution (J,Φ) is given as follows.
Denoting by ϕ(y, z) the polynomial ϕ(y, z) = y2z2, define

J(x, y, z) =
(

3
4

(
a + x(b − a)

)
· ϕ(y, z), 0, 0

)
,

Φ(x, y, z) =

{
3a(x − 1

2
)ϕ(y, z) in (0, 0.5) × (0, 1) × (0, 1),

3b(x − 1
2
)ϕ(y, z) in (0.5, 1) × (0, 1) × (0, 1).
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Notice that Φ is again piecewise smooth, but only belongs to H
3
2
−ε(Ω), ε > 0, whereas

the vector fluxes J and 1
3σt

∇Φ =
(
ϕ(y, z), (x − 1

2
)∂yϕ(y, z), (x − 1

2
)∂zϕ(y, z)

)
are

smooth functions. For the numerical calculations, we use the same sequence of tetra-
hedral meshes as in the previous examples.

We consider the two cases a = 1, b = 0.01 and a = 100, b = 1. Notice that the
jump in the normal derivative of Φ at the surface x = 0.5 is equal to 3(a − b)y2z2.
This jump is of almost two orders of magnitude larger in the case a = 100, b = 1
than in the case a = 1, b = 0.01. For this reason, deterioration of the convergence
rates due to the lack of smoothness of the exact solution might be more serious in the
second case than in the first one.

For the case a = 1, b = 0.01, we show in Table 5.3 the errors and the convergence
rate estimates in the Ah–seminorm and in the L2–norm of Φ, as well as in the L2-norm
of J, for k = 0 and k = 1. Orders 0.5 and 1.5 convergence in the Ah–seminorm, and
order 1 and 2 convergence in the L2–norm for Φ, for k = 0 and k = 1, respectively, are
obtained. These results agree with the theoretical estimates in Theorem 4.1, as in the
previous two examples, even though the elliptic regularity assumptions of Theorem 4.1
for the estimate of the L2–error in Φ are not satisfied. Furthermore, the L2–error in
J also converges with the optimal orders 1 and 2, for k = 0 and k = 1, respectively.

|(J − Jh,Φ − Φh)|Ah
‖Φ − Φh‖0,Ω ‖J − Jh‖0,Ω

i error ri error ri error ri

1 1.76 e–1 – 6.15 e–2 – 5.14 e–2 –
2 1.27 e–1 4.67 e–1 3.18 e–2 9.50 e–1 2.92 e–2 8.17 e–1

k = 0 3 8.95 e–2 5.04 e–1 1.61 e–2 9.85 e–1 1.54 e–2 9.21 e–1
4 6.30 e–2 5.08 e–1 8.07 e–3 9.95 e–1 7.91 e–3 9.61 e–1
5 4.44 e–2 5.05 e–1 4.04 e–3 9.98 e–1 4.01 e–3 9.80 e–1
1 9.42 e–2 – 1.59 e–2 – 1.39 e–2 –
2 3.66 e–2 1.36 e+0 4.06 e–3 1.97 e+0 3.56 e–3 1.97 e+0

k = 1 3 1.33 e–2 1.46 e+0 1.02 e–3 1.99 e+0 8.73 e–4 2.03 e+0
4 4.77 e–3 1.49 e+0 2.55 e–4 2.00 e+0 2.13 e–4 2.04 e+0
5 1.69 e–3 1.49 e+0 6.38 e–5 2.00 e+0 5.26 e–5 2.02 e+0

Table 5.3

Two-material problem, a = 1, b = 0.01: errors and convergence rates ri in Ah–seminorm,

L2–norm of Φ and L2–norm of J, for k = 0, 1.

In Figures 5.3 and 5.4, the errors in the jumps of Φ and J for k = 0 and k = 1,
respectively, are shown. As in Example I, we see that the interior jumps converge at
the rates O(h

1
2 ) and O(h

3
2 ) for k = 0 and k = 1, respectively, while the boundary

jumps show the full convergence rate of O(h1) and O(h2), for k = 0 and k = 1,
respectively.

Consider now the case a = 100, b = 1. The numerical rates in Table 5.4 indeed
show a different picture than the previous case of a = 1 and b = 0.01. For both k = 0
and k = 1, the rates in the Ah–seminorm have deteriorated slightly, but they are still
close to 0.5 and 1.5, for k = 0 and k = 1, respectively. Similar behavior is observed in
the L2–norm of J. These results are in agreement with Theorem 4.1. The differences
in the L2–errors in Φ are more remarkable: the convergence rates are smaller than
0.5 for k = 0 and better than 2 for k = 1.

Finally, we show in Figures 5.5 and 5.6 the behavior of the errors in the jumps of
Φ and J for k = 0 and k = 1, respectively. For k = 0, the jumps of Φ on the reflective
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Fig. 5.3. Two-material problem, a = 1, b = 0.01: L2-errors of the jumps in J and Φ, for k = 0.
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Fig. 5.4. Two-material problem, a = 1, b = 0.01: L2-errors of the jumps in J and Φ, for k = 1.
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|(J − Jh,Φ − Φh)|Ah
‖Φ − Φh‖0,Ω ‖J − Jh‖0,Ω

i error ri error ri error ri

1 1.47 e+1 – 7.76 e+0 – 3.83 e+0 –
2 1.05 e+1 4.84 e–1 5.05 e+0 6.21 e–1 2.01 e+0 9.29 e–1

k = 0 3 7.49 e+0 4.90 e–1 3.49 e+0 5.34 e–1 1.04 e+0 9.56 e–1
4 5.32 e+0 4.95 e–1 2.59 e+0 4.29 e–1 5.33 e–1 9.57 e–1
5 3.79 e+0 4.87 e–1 1.94 e+0 4.17 e–1 2.78 e–1 9.42 e–1
1 5.36 e+0 – 2.68 e+0 – 8.23 e–1 –
2 2.09 e+0 1.36 e+0 6.91 e–1 1.95 e+0 2.17 e–1 1.92 e+0

k = 1 3 8.44 e–1 1.31 e+0 1.56 e–1 2.14 e+0 5.72 e–2 1.93 e+0
4 3.43 e–1 1.30 e+0 3.35 e–2 2.22 e+0 1.53 e–2 1.90 e+0
5 1.36 e–1 1.33 e+0 7.37 e–3 2.19 e+0 4.15 e–3 1.88 e+0

Table 5.4

Two-material problem, a = 100, b = 1: errors and convergence rates ri in Ah–seminorm,

L2–norm of Φ and L2–norm of J, for k = 0, 1.

boundary in this case converge more slowly – and suboptimally – than the case a = 1,
b = 0.01, while the other jumps exhibit rates of convergence similar to those for the
case a = 1, b = 0.01. For k = 1, the jumps of Φ on the reflective boundary exhibit
convergence similar to those for k = 0. However, here convergence is at the optimal
rate of O(h

3
2 ) that is, half an order less than the L2-norm. All the other jumps show

a convergence rates as for the k = 0 case.
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Fig. 5.5. Two-material problem, a = 100, b = 1: L2-errors of the jumps in J and Φ, for k = 0.
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Fig. 5.6. Two-material problem, a = 100, b = 1: L2-errors of the jumps in J and Φ, for k = 1.

6. Conclusions. The discontinuous Galerkin method of Warsa, Wareing and
Morel introduced in [12] and [11] for two– and three–dimensional domains, respec-
tively, is a mixed finite element method used to compute numerical solutions for
problems of radiation–diffusion. That method belongs to the general class of mixed
DG methods presented and analyzed in [2]. The analysis there guarantees that, for
polynomial approximation degrees k ≥ 0, the method converges with order k + 1

2

in the vector unknown and with order k + 1 in the scalar unknown. The numerical
experiments we presented confirm that these rates are sharp.
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discontinuous Galerkin method for elliptic problems on Cartesian grids, SIAM J. Numer.
Anal., 39 (2001), pp. 264–285.



DISCONTINUOUS GALERKIN METHOD FOR RADIATION-DIFFUSION 15

[5] B. Cockburn, G. Karniadakis, and C.-W. Shu, eds., Discontinuous Galerkin Methods. The-

ory, Computation and Applications, vol. 11 of Lect. Notes Comput. Sci. Engrg., Springer–
Verlag, 2000.

[6] B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time–dependent

convection–diffusion systems, SIAM J. Numer. Anal., 35 (1998), pp. 2440–2463.
[7] , Runge–Kutta discontinuous Galerkin methods for convection–dominated problems, J.

Sci. Comp., 16 (2001), pp. 173–261.
[8] B. Davison, Neutron Transport Theory, Clarendon Press, 1957.
[9] E. E. Lewis and J. W. F. Miller, Computational Methods of Neutron Transport, American

Nuclear Society, 1993.
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